Annex 9A Understanding the Basics and Supply Potential for Biofuels

September 2021

Presented by

Based in Switzerland, Square Co publishes professional analyses designed to help players active on alternative fuels markets (biodiesel and advanced fuels) to gain a deeper understanding of regulatory frameworks, market trends and industry developments.

Square Co also publishes on a weekly basis a set of independent price assessments for each quality of biodiesel that are very well respected on the global market. As pure analysts we don't take any position on the markets, a specificity that allows us to enjoy a reputation of high reliability and full independence.

Square Co customers include oil companies, biofuel producers, trading companies and governmental bodies located all around the world.

Conclusion

Table 16: Potential of solid feedstocks

	EFB	Wheat Straw	Barley straw	Corn Stover	Bagasse
Feasability	Low	Madure	Madda.com	Madium	10.00
Feedstock collection complexity	Easy	May complex	Mary complex	Mary complex.	110
Production	No plant running as of today, neither project announced	Serve projects under Server under Angelesen (Sess angelesen (S	10110-001001 0180 0180-0180 -0190-0180 0100-0180 0100-0190		and a second
Capex Million EUR	+/- 250	+7250	+250	+250	4.2%
Biofuel technology installation	yes	1000	100	100	100
Annual Capa. prod equivalent	50kt	5.044	5.044	504	60%
Comments	High capex investment and vertically integrated projects	High capes Investment and complexity for securing the fastbooks	High-capes Heattheast and Complexity for Becatories Restletation	High capes Investment and complexity for securing the fastbooks	High cape Heathers and Hertrady High-In- property

Table 17: Potential of liquid feedstocks

	СТО	Tall Oil Pitch	Brown Liquor	EFB Oil	POME OII	SBE oil	Grape Marc	Wine Lees
Feasability	High.	1000	1000	1000	1000	Made	Made	Margine -
Feedstock collection complexity	Eng.	Cong.	Cong.	Adda da uma	Madure	And and a second second	Complex	Campo
Production	HAG plants number in Scandinavia 8.the proof the schoology is school of a	The Readition's sectors able to be processed into Disfuely.	Different projects are numeragin Europe. The technicality tools: ready	No real invest ment need on Fame HSD skills Investment to To drive on CTD recovery	No real Investment need on Biodisean Milliong or charming the product	Complexity for collecting the SBE of and treated it as a "good erong?" pate of for the content of the	Passible but complex. After distillation, another step to a rectilication column is	Complete due to i too uni- acolisti

Table 18: Summary of the potential supply for each feedstock and associated fuel (KT)

	Feedstock	Supply (base 2020)	Indicative Biofuel Prod. Yield	Equivalent biofuel	Category of biofuel (most likely)
LIQUID	СТО	1.901	80%	1 521	16/0
	Tall Oil Pitch	475	807%		0.8 all CTO used directly
	Brown Liquor	615	70%	431	Ethanol
	EFB oil	700	1000		Tarra
	POME oil	1.058	80%	1,724	Fame
	SBE oil	140	70%	100	Fama
	Grape Marc	0.012	423	4.013	Ethand
	Wine lees	1487	12%	1.18	Ethanol
	Total liquid	13.427		8.048	
SOLID	Wheat Straw	350 342	14%	42.048	Ethanol
	Barley straw	64,505	14%	9.071	Ethanol
	Corn Stover	320-001	14%	44.800	Ethanol
	Bagasse	304 779	13%	38.093	Ethanol
	EFB	47100	13%	6.123	Ethanoi
	Total solid	1005507		147 094	

Summary

1.	Introduction	2
	1.1 Context and objectives of the study	2
	1.2 Methodology	3
2.	List of Advanced Feedstocks & Selection Covered by the Study	4
	2.1 Limitations of the Directive display	4
	2.2 Classification of 9A feedstocks into 8 sub-categories2.3 Coverage of this study	5
_		
3.	Wastes from the Pulp Industry	8
	3.1 Basics of CTO, tall oil pitch and brown liquor	8
	3.1.1 Definition and origins of the feedstocks	9
	3.1.2 Definitions of the yields	13 14
	3.2 Supply of advanced feedstocks	
4.	Wastes from the Palm Oil Industry	17
	4.1 Basics of EFB, POME and SBEO	17
	4.1.1 Definition and origins of the feedstocks	18
	4.1.2 Definitions of the yields	24
	4.2 Supply of advanced feedstocks4.3 Analysis of the potential	26 29
_		
5.	Wastes from the Sugar Industry	31
	5.1 Basics of bagasse	31
	5.1.1 Definition and origins of the feedstocks	32
	5.1.2 Definitions of the yields	34
	5.2 Supply of advanced feedstocks5.3 Analysis of the potential	34 36
6		
6.	6.1 Basics of wheat/barley straw and corn stover	37 37
	6.1.1 Definition and origins of the feedstocks	38
	6.1.2 Definitions of the yields 6.2 Supply of advanced feedstocks	38 39
	6.3 Analysis of the potential	41
7		
7.	7.1 Basics of grap marc and wine lees	42
	7.1.1 Definition and origins of the feedstocks	43
	7.1.2 Definition and origins of the yields	44
	7.2 Supply of advanced feedstocks	44
	7.3 Analysis of the potential	46
8.	Conclusion	48
0.	8.1 What are the most promising feedstocks in terms of easy and ample supply + processing?	40
	8.2 Summary of the estimated global supply for each feedstock	51
	8.3 Commission ongoing work to select new feedstocks → technology-based Annex IX A vs B	53
Т	able & Scheme index	55
<	ources	56
J		50

1. Introduction

1.1 Context and objectives of the study

The list of eligible wastes to biofuels incentives at an EU level was first published in the Annex 9 of the ILUC Directive (1513/2015) in September 2015, before being re-printed without any change into the RED2 Directive (2001/2018) in December 2018.

Although the biofuel industry has been dealing with parts A and B of this list for the past six years, the real knowledge of many feedstocks remains limited, not to say missing.

If supply chains and economics of UCO and Tallow C1 are well understood by market players, the picture of most of the 9A feedstocks remains blur. Their classification as "advanced" feedstocks by itself suggests intricacy as only wastes/residues/by-products challenging to transform with existing technologies have been selected.

Square Co teamed up with outsourced experts to examine all the 9A feedstocks potentially suitable for biofuels production (excluding biogas) and determine their level of complexity, maturity and availability. Understanding how and by which industry these wastes were generated constituted the backbone of our work.

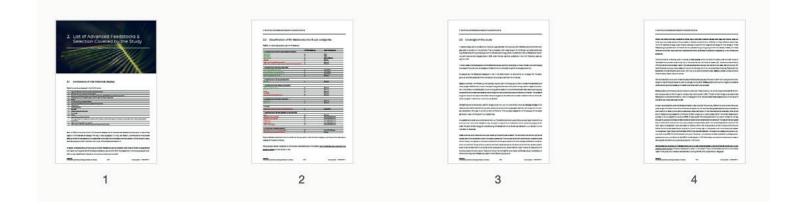
This study aims at proposing a clearer vision of the origin of the most promising 9A feedstocks, explaining their basics and estimating their potential supply in the coming decade.

The result of our preliminary work leaded to the selection of 13 feedstocks that hold a potential with technologies already mastered by biofuels companies. All the others are either too confidential, not mature enough or too complex to cover.

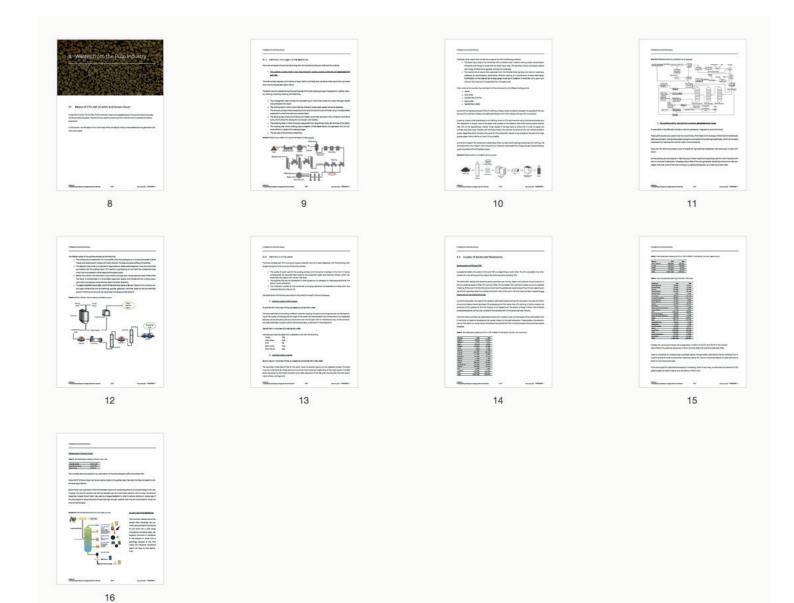
This extended research brings an insight into the most promising 9A feedstocks, with a clear explanation of the wastes/residues/by-products streams, challenges associated with their production and a transparent calculation of their potential supply.

Few weeks before the expected publication of an update of the Annex 9, we propose to all biofuel stakeholders to finally gain a clearer vision of the "old" list, with the perspective to serenely apprehend the real potential of each advanced pathway. From 2022, when advanced sub-targets will be enforced in most of the EU markets, navigating the complex business environment of biofuels won't be achieved without a deeper knowledge of the 9A raw materials.

2.2 Classification of 9A feedstocks into 8 sub-categories


 Table 2:
 Annex 9A displayed by origin of the feedstock

	LETTER UNDER 9A	MAIN TECHNOLOGY
1. WASTES FROM THE PULP AND FORESTRY INDUSTRY		
Tall oil (CTO)	0	HVO
Tall oil pitch	Н	Fame/HVO
Brown liquor	0	Ethanol/Biogas
Sawdust	0	Ethanol
Other non-food cellulosic material	Ρ	Ethanol
Other ligno-cellulosic material except saw logs and veneer logs	Q	Ethanol
2. WASTES FROM THE PALM INDUSTRY		
Palm Oil Mill Effluent (POME)	G	Fame/HVO
Spent Bleaching Earth Oil (SBEO)	G	Fame/HVO
Empty Fruit Bunches Oil (EFB oil)	G	Fame/HVO
Empty Fruit Bunches (EFB)	G	Ethanol
3. WASTES FROM THE SUGAR INDUSTRY		
Bagasse	J	Ethanol
4. WASTES FROM THE CEREALS INDUSTRY		
Wheat and Barley Straw	E	Ethanol
Corn Stover	E	Ethanol
Husks	М	Ethanol
Nutshells	L	Ethanol
Cobs cleaned of kernels of corn	Ν	Ethanol
5. WASTES FROM THE WINE INDUSTRY		
Grape Marc	K	Ethanol
Wine lees	К	Ethanol
6. ALGAE		
Cultivated on land in ponds or photobioreactors	A	Fame/HVO
7. WASTES FROM THE PROCESSING FOOD INDUSTRY		
Whey	D	Ethanol
Residues from breweries	D	Fame/HVO/Ethanol
Residues from bakeries	D	Fame/HVO/Ethanol
Coffee Pulp	D	Fame/HVO/Ethanol
Potato Juice	D	Fame/HVO/Ethanol
Other food wastes	D	Fame/HVO/Ethanol
8. OTHER UNCLASSIFIED WASTES		
Biomass fraction of municipal wastes	В	Fame/HVO/Biogas
Animal manure and sewage sludge	F	Biogas


Some companies process multiple feedstocks i.e. among those 1.200 ISCC feedstocks certifications, there is 1.014 unique certificates ID hold by 983 unique companies.

The study is delivered with an **Annex in Excel form**, displaying the details (company name, country and statute) of all ISCC valid certificates mentionned in table 20.

2. List of Advanced Feedstocks & Selection Covered by the Study

3. Wastes from the Pulp Industry

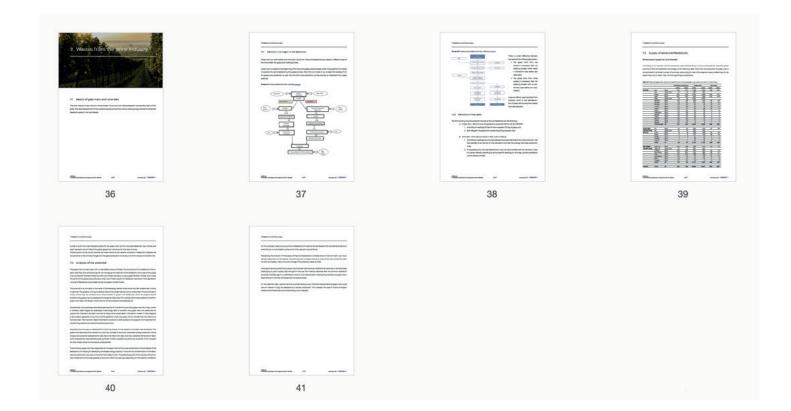
ANNEX 9A Understanding the Basics and Supply Potential for Biofuels

4. Wastes from the Palm Oil Industry

5. Wastes from the Sugar Industry

ANNEX 9A Understanding the Basics and Supply Potential for Biofuels

6. Wastes from the Cereal Industry



7. Wastes from the Wine Industry

8. Conclusion

40

ANNEX 9A Understanding the Basics and Supply Potential for Biofuels

Contact us

SQUARE COMMODITIES SARL Tel: +41 79 676 88 87 Email: admin@squarecommodities.com

EDITOR IN CHIEF Olivier Pellegrinelli olivier@squarecommodities.com

VISIT US ON www.squarecommodities.com

Copyright & Disclaimer

The content of the publications released by Square Co. ("the Publisher") is proprietary of the company. No part of the publications (texts, tables, graphics or any other content) may be redistributed in any form or by any means, electronic or mechanical, without prior written permission from the Publisher. This prohibition also applies within companies whose employees are subscribers of the Publisher's services. Only subscribers acknowledged by the Publisher have access to the publications.

The publications have been prepared by the Publisher itself. The information contained therein has been furnished by sources that the Publisher believes to be reliable. However, the Publisher does not guarantee the accuracy, adequacy, timeliness or completeness of such information nor will its employees be responsible for any errors or omissions for the results obtained from the use of the information contained in its publications.

This publication released by the Publisher are for information purposes only and shall not be construed as an offer, invitation or solicitation to enter in any particular transaction trading strategy, mandate or investment profile nor as an investment, legal, audit, tax or other professional advice.

Copyright 2021 Square Co. All rights reserved.